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Abstract-- Cloud computing technology is used to share computational resources under the cloud resource providers. The cloud 
nodes use the shared resources. Cloud computing is Internet-based computing to share resources, software and information. Both 
transactional and long-running analytic computations are comprised into workloads. Scientific simulations to multi-tier transactional 
applications are referred as workloads.  
  Resources are provided with reference to the category of the workload. Transactional workloads are managed using flow 
control, load balancing and application placement. Non-interactive workloads need scheduling and resource control. Common 
virtualization control mechanisms are used to manage mix of transactional and batch workloads. Relative Performance Functions 
(RPFs) are used to permit trade-offs between different workloads. Application placement controller (APC) provides the decision-
making logic for placement of both web and non-interactive workloads. Placement optimizer is tuned to provide dynamic placement 
for web applications. Placement algorithm with placement control loop is used to place jobs in the server. 
  Transactional and batch workload based resource allocation is provided in the autonomic workload management system. 
Placement algorithm with placement control loop is improved to manage low level and high level resources. Data retrieval rate is 
integrated with the placement process. Workload and web applications are placed with estimated and requested computation loads. 
Data distribution factor is integrated with the system. 
Index Term -  Performance Management, Resource management, Virtualization, Workload management.  

 
 
1 INTRODUCTION 
 

Cloud computing is Internet based 
development and use of computer technology. 
In concept, it is a paradigm shift whereby details 
are abstracted from the users who no longer 
need knowledge of, expertise in, or control over 
the technology infrastructure "in the cloud" that 
supports them. It typically involves the 
provision of dynamically scalable and often 
virtualized resources as a service over the 
Internet.  

 
Fig 1. Cloud computing logical diagram 

Overview 
 

The term cloud is used as a metaphor for 
the Internet, based on how the Internet is 
depicted in computer network diagrams and is 
an abstraction of the underlying infrastructure it 
conceals. Typical cloud computing providers 
deliver common business applications online 
which are accessed from a web browser, while 
the software and data are stored on the servers. 

 
These applications are broadly divided 

into the following categories: Software as a 
Service (SaaS), Utility Computing, Web Services, 
Platform as a Service (PaaS), Managed Service 
Providers (MSP), Service Commerce, and 
Internet Integration. The name cloud computing 
was inspired by the cloud symbol that is often 
used to represent the Internet in flow charts and 
diagrams.  
 
2 RELATED WORKS 
 
  The explicit management of 
heterogeneous workloads was CPU shares are 
manually allocated to run mixed workloads on a 
large multiprocessor system. This is a static 
approach, and does not run workloads within 
virtual machines (VM).  The relative 
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performance functions we use in our system are 
similar in concept to the utility functions that 
have been used in real-time work schedulers to 
represent the fact that the value produced by 
such a system when a unit of work is completed 
can be represented in more detail than a simple 
binary value indicating whether the work met 
its or missed its goal. Outside of the realm of the 
real-time systems, focus on a utility-guided 
scheduling mechanism driven by data 
management criteria, since this is the main 
concern for many data-intensive HPC scientific 
applications. In our work, we focus on CPU-
bound heterogeneous environments, but our 
technique could be extended to observe data 
management criteria by expanding the 
semantics of our RPFs. Despite the similarity 
between an RPF and a utility function, one 
difference should be pointed out. While utility 
functions are typically used to model user 
satisfaction or business value resulting from a 
particular level of performance, an RPF is 
merely a measure of relative performance 
distance from the goal. Hence, we do not study 
the correctness of RPFs with respect to modeling 
user satisfaction. If such a satisfaction model 
exists, it may be used to transform an RPF into a 
utility function. In [5] and [6], the authors 
leverage utility-based systems for making 
placement decisions and provisioning resources: 
these works do not address the problem of 
managing heterogeneous workloads, as they are 
both focused on transactional workloads only.  
 
  There is also previous work in the area 
of managing workloads in virtual machines. The 
overhead of a dynamic allocation scheme that 
relies on virtualization, covering both CPU-
intensive jobs and transactional workloads, but 
does not consider mixed environments. Bodı’k.P 
et al. [8] uses Machine Learning techniques for 
making management decisions. The authors 
stress the max-min-shares approach, focusing on 
the use of current virtualization control knobs. 
Work presented focuses on the cost of VM 
migration, and mitigate it by minimizing 
migrations over time. In [2], authors propose a 

joint-VM sizing approach in which multiple 
VMs are consolidated and provisioned as an 
aggregate. In [3], authors propose a holistic 
approach to treat performance, power and 
cooling of IT infrastructures. Neither of these 
techniques provides a technology to 
dynamically adjust allocation based on SLA 
objectives in the face of resource contention. The 
authors of [4] present new scheduling 
algorithms for the cloud, but their effort is 
focused only on long running jobs and VM 
migration is not used. The authors of [7] focus 
their work on multi-tiered transactional systems, 
with special effort on avoiding the damaging 
effects of workload burstiness. The authors 
propose a resource manager that is decoupled 
from the infrastructure provider. In our work, 
the resource manager is part of the computing 
infrastructure.  
  Placement problems in general have 
also been studied in the literature, frequently 
using techniques including bin packing, 
multiple knapsack problems, and 
multidimensional knapsack problems. The 
optimization problem that we consider presents 
a nonlinear optimization objective in contrast. 
The authors evaluate a similar problem to that 
addressed in our work and use a simulated 
annealing optimization algorithm. Their strategy 
aims to maximize the overall system utility 
while we focus on first maximizing the 
performance of the least performing application 
in the system, which increases fairness and 
prevents starvation. A fuzzy logic controller is 
implemented to make dynamic resource 
management decisions. This approach is not 
application centric—it focuses on global 
throughput—and considers only transactional 
applications. The algorithm proposed allows 
applications to share physical machines, but 
does not change the number of instances of an 
application, does not minimize placement 
changes, and considers a single bottleneck 
resource. 
 
 
3 PROBLEM STATEMENTS 
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 Heterogeneous workloads run on the 
same physical nodes and pose extraordinary 
challenges on a cloud management middleware. 
Integrated performance management of mixed 
workloads is a challenging problem. First, 
performance goals for different workloads tend 
to be of different types. For interactive 
workloads, goals are typically defined in terms 
of average or percentile response time or 
throughput over a short time interval, while 
goals for non-interactive workloads concern the 
performance of individual jobs. Second, due to 
the nature of their goals and the short duration 
of individual requests, interactive workloads 
lend themselves to management at short control 
cycles, whereas non-interactive workloads 
typically require calculation of a schedule for an 
extended period of time. In addition, different 
types of workload require different control 
mechanisms for management. Transactional 
workloads are managed using flow control, load 
balancing, and application placement. Non-
interactive workloads need scheduling and 
resource control. Traditionally, these have been 
addressed separately. 
 
 Our technique relies on common 
virtualization control mechanisms to manage 
workloads. In addition, our system uses Relative 
Performance Functions (RPFs) to permit trade-
offs between different workloads. The RPFs 
define application performance relative to that 
application’s goal. It can therefore be seen that 
equalizing the achieved relative performance 
between two applications results in “fairness”— 
the applications will be equally satisfied in 
terms of relative distance from their goals. The 
original contribution of this paper is a scheme 
for modeling the performance of, and managing, 
non-interactive long-running workloads.  
 
4 CLOUD WORKLOAD MANAGEMENT 
SYSTEMS 
 
  The managed system includes a set of 
heterogeneous server machines, referred to 
henceforth as nodes. Web applications, which 
are served by application servers, are replicated 

across nodes to form application server clusters. 
Requests to these applications arrive at an entry 
router which may be either an L4 or L7 gateway 
that distributes requests to clustered 
applications according to a load balancing 
mechanism, and implements a flow control 
technique. Long-running jobs are submitted to 
the system via the job scheduler, which, unlike 
traditional schedulers, does not make job 
execution and placement decisions. In our 
system, the job scheduler only manages 
dependencies among jobs and performs 
resource matchmaking. Once dependencies are 
resolved and a set of eligible nodes is 
determined, jobs are submitted to the 
application placement controller (APC). 
 
  APC is the most important component 
of the system. It provides the decision-making 
logic that affects placement of both web and 
non-interactive workloads. Its placement 
optimizer calculates the placement that 
maximizes the minimum satisfaction across all 
applications. We introduced a technique that 
provides such dynamic placement for web 
applications: APC used in this system is an 
augmented version of that controller. We 
modified the algorithm inputs from application 
CPU demand to a per-application RPF of 
allocated CPU speed. Permitting resource 
requirements to be represented by nonlinear 
RPFs allows us to better deal with 
heterogeneous workloads which may differ in 
their sensitivity to a particular resource 
allocation. 
 
  In our work, we leverage the flow 
controller, which comes up with an RPF for each 
web application This RPF gives a measure of 
application satisfaction with a particular 
allocation of CPU power given its current 
workload intensity and performance goal. 
 Generating RPFs for the long running 
jobs is not studied in previous work, and is the 
main contribution of this work. Each job has an 
associated performance goal, and when a job 
completes exactly on schedule, the value of the 
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RPF is zero. Otherwise, the value increases or 
decreases linearly depending on the distance of 
completion time from the goal. Currently, we 
only support completion time goals, but we plan 
to extend the system to handle other 
performance objectives.  
 
  APC relies on the knowledge of 
resource consumption by individual requests 
and jobs. The web workload profiler obtains 
profiles for web requests in the form of the 
average number of CPU cycles consumed by 
requests of a given flow. The job workload 
profiler obtains profiles for jobs in the form of 
the number of CPU cycles required to complete 
the job, the number of threads used by the job, 
and the maximum CPU speed at which the job 
may progress. 
 
5 HETEROGENEOUS WORKLOADS 
MANAGEMENT MODELS 
 
  The goal of the technique introduced in 
this paper is to make placement decisions that 
involve applications of different nature, more 
specifically transactional applications and long-
running workloads. Given the different 
characteristics of each workload, that make their 
performance hardly comparable, we leverage 
RPF to produce a normalized representation of 
their performance. RPFs are leveraged by the 
placement algorithm to make placement 
decisions, with the goal of maximizing the 
relative performance delivered by all the 
applications in the system. 
 
  The placement algorithm and RPFs for 
transactional workloads are not a novel 
contribution of this work. The main contribution 
of this work is the introduction of a model that 
allows the creation of RPFs for long running 
workloads. The placement algorithm is 
extended to leverage such a model and is 
therefore able to deal with heterogeneous 
workloads. In the following sections, we present 
a formal description of the problem addressed 
in this work. 
 

 The application placement problem is 
known to be NP-hard and heuristics must be 
used to solve it. In this paper, we leverage an 
algorithm proposed and adapted to a nonlinear 
optimization objective. The basic algorithm, as 
described above, is surrounded by the 
Placement control loop, which is designed to 
have the Application Placement Controller 
periodically inspect the system to determine if 
placement changes are now required to better 
satisfy the changing extant load. The period of 
this loop is configurable and can be interrupted 
when the configuration of the system is 
changed. 
 
  The placement change phase is executed 
several times, each time being referred to as a 
round. Each round invokes the placement 
change method, which makes a single new 
placement suggestion starting from the 
placement suggestion provided by the previous 
round’s execution. The placement change 
method first iterates over nodes. For each node, 
it iterates over all instances placed on this node 
and attempts to remove them one by one, thus 
generating a set of configurations whose 
cardinality is linear in the number of instances 
placed on the node. For each such configuration 
it iterates over all applications with some 
unsatisfied CPU demand, attempting to place 
new instances on the node as permitted by the 
constraints. The key to the accuracy and 
performance of the algorithm is the order in 
which nodes, instances, and applications are 
visited in the three nested loops. The order must 
be driven by the values of um. In the outer loop, 
nodes are processed according to the highest 
utility of stopping, which is calculated for a 
node by calculating the highest RPF among all 
applications placed on that node after an 
instance of an application is stopped. In the 
intermediate loop, instances are processed in 
decreasing RPF order calculated against the 
current placement. Finally, in the inner loop, 
applications are considered in the increasing 
order of RPF. In addition, numerous carefully 
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tuned shortcuts are used to reduce the 
computational complexity of the algorithm. 
 
  The computational complexity of the 
technique is O (NMk), where k is the maximum 
number of instances on a node. The complexity 
may further increased by the RPF calculation. 
For transactional workloads, we can evaluate 
RPFs in O (1), but for long running workloads 
that bound is non constant. In practice, the 
computation time remains below 10 s for up to 
700 applications, reaching 23 s for 1,000 
applications. Recall that the average size for 
enterprise datacenter ranges from tenths of 
nodes to a few hundreds typically. These values 
are perfectly acceptable for the purpose of these 
systems. 
 
6 NON INTERACTIVE WORKLOADS 
MANAGEMENT MODELS 
 
  In this section, we focus on applying our 
placement technique to manage long-running 
jobs. We start by observing that a performance 
management system cannot treat batch jobs as 
individual management entities, as their 
completion times are not independent. For 
example, if jobs that are currently running 
complete sooner, this permits jobs currently in 
the queue to complete sooner as well. Thus, 
performance predictions for long-running jobs 
must be done in relation to other long-running 
jobs.  
  Another challenge is to provide 
performance predictions with respect to job 
completion time on a control cycle which may 
be much lower than job execution time. 
Typically, such a prediction would require the 
calculation of an optimal schedule for the jobs. 
To trade off resources among transactional and 
long-running workloads, we would have to 
evaluate a number of such schedules calculated 
over a number of possible divisions of resources 
among the two kinds of workloads. The number 
of combinations would be exponential in the 
number of nodes in the cluster. We therefore 
propose an approximate technique, which is 
presented here. 

 
6.1 Job Characteristics 
 
  We are given a set of jobs. With each job 
m we associate the following information: 

• Resource usage profile. A resource 
usage profile describes the resource 
requirements of a job and is given at job 
submission time—in the real system, 
this profile comes from the job workload 
profiler. The profile is estimated based 
on historical data. Each job m consists of 
a sequence of Nm stages, s1,. . . , sNm, 
where each stage sk is described by the 
following parameters: 
- The amount of CPU cycles consumed 
in this stage, αk,m.  
- The maximum speed with which the 

stage may runs, .  
- The minimum speed with which the 

stage must run, whenever it runs, . 
- The memory requirement γk,m. 

• Performance objectives. The SLA 
objective for a job is expressed in terms 
of its desired completion time, זm, which 
is the time by which the job must 
complete. Clearly, זm should be greater 

than the job’s desired start time, , 
which itself is greater than or equal to 
the time when the job was submitted. 
The difference between the completion 
time goal and the desired start time, זm - 

, is called the relative goal, and 
can be understood as the maximum 
acceptable job runtime. Notice that job 
runtime will depend on allocated 
resources to the Virtual Machine in 
which the job runs. 

 
  We are also given an RPF that maps 
actual job completion time tRmR to a measure of 
satisfaction from achieving it, uRmR(tRmR). If job m 
completes at time tRmR, then the relative distance 
of its completion time from the goal is the job’s 
actual runtime normalized to its relative goal, 
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which is expressed by the RPF of the following 
form: 

  (1) 
• Runtime state. At runtime, we monitor 

and estimate the following properties 
for each job: current status, which may 
be either running, not started, 
suspended, or paused; and CPU time 
consumed thus far,  

. 
• Relative goal factor. For the purpose of 

easily controlling the tightness of SLA 
goals in our experiments, we introduce 
a relative goal factor which is defined as 
the ratio of the relative goal of the job to 
its execution time at the maximum 

speed, . 
 
6.2 Hypothetical Relative Performance 
 
  To calculate job placement, we need to 
define an RPF which APC can use to evaluate its 
placement decisions. While the actual relative 
performance achieved by a job can only be 
calculated at completion time, the algorithm 
needs a mechanism to predict the relative 
performance that each job in the system will 
achieve given a particular allocation. This is also 
the case for jobs that are not yet started, for 
which the expected completion time is still 
undefined. To help answer questions that APC 
is asking of the RPF for each application, we 
introduce the concept of hypothetical relative 
performance. 
 
7 MIXED WORKLOAD PLACEMENTS 
FOR CLOUDS 
 
   The system is designed to manage the 
resources and workloads under clouds. The web 
applications and transactional applications are 
managed by the system. Data and 
computational resources are allocated by the 
system. The system is divided into five major 
modules. They are resource monitoring, data 

sources, workload manager, Application 
Placement Controller (APC) and load 
distribution. Resource monitoring module is 
designed to monitor the computational 
resources. Data sources module is designed to 
manage the data sources. Workload manager 
module handles the workload submission 
process. Application Placement Controller 
(APC) module is designed to handle resource 
allocation for the applications. Load distribution 
module is designed to distribute the workloads 
to the providers.  
 
7.1 Resource Monitoring 
 
  The computational resources are 
provided by a set of cloud nodes. Processor and 
memory resources are provided by the nodes. 
Total resources and available resource levels are 
monitored and updated to the server. Resource 
levels are updated with workload execution 
process. 
 
7.2 Data Sources 
 
  Data sources are used to provide 
databases and data files. Data sources are placed 
in different machines. Workloads are scheduled 
with data source requirements. Data source 
distribution is also managed by the system. 
 
7.3 Workload Manager 
 
  Transactional applications and batch 
jobs are submitted as workloads. Transactional 
web workloads are submitted to the web server. 
Interactive and non-interactive workloads are 
assigned with data and resources. The 
workloads are collected from the clients.  
 
7.4 Application Placement Controller (APC) 
 
  Application placement controller 
handles the service placement process. 
Placement optimizer is used to verify the 
performance levels. Services and resource levels 
are analyzed under the APC. Relative 
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performance functions are used to estimate the 
performance levels. 
 
7.5 Load Distribution 
 
  The transactional and batch workloads 
are assigned to the resources. The transactional 
web applications are assigned with high 
priority. The batch workloads are also assigned 
with data source levels. Performance prediction 
is estimated for load distribution process. The 
original contribution of this  scheme is for 
modeling the performance of, and managing, 
non-interactive long-running workloads.  
 
 
8 CONCLUSIONS 
 
  Enterprise datacenters consolidate 
workloads on the same physical hardware to 
reduce the cost of infrastructure and electrical 
energy. Heterogeneous workloads have 
different nature. A heterogeneous set of 
applications is running a web application and a 
batch job on the same physical server. The 
system manages the mixed workloads with long 
running jobs and transactional applications. The 
system allocates workload types on the same 
physical hardware with virtualization control 
mechanism. The system manages resources with 
load distribution. Data source allocation is also 
carried out under the system. The system 
reduces the computational time. Efficient 
resource monitoring process is provided in the 
cloud environment. 
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