
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 617
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Load Distribution & Resource Scheduling
for Mixed Workloads in Cloud Environment

1V. Sindhu Shri II ME (Software Engineering), BIT-Sathy. E-mail: nethashri@gmail.com

2 S. Priya Asst.Profeesor,BIT-Sathy. E-mail: pri1988cse@gmail.com

Abstract-- Cloud computing technology is used to share computational resources under the cloud resource providers. The cloud
nodes use the shared resources. Cloud computing is Internet-based computing to share resources, software and information. Both
transactional and long-running analytic computations are comprised into workloads. Scientific simulations to multi-tier transactional
applications are referred as workloads.
 Resources are provided with reference to the category of the workload. Transactional workloads are managed using flow
control, load balancing and application placement. Non-interactive workloads need scheduling and resource control. Common
virtualization control mechanisms are used to manage mix of transactional and batch workloads. Relative Performance Functions
(RPFs) are used to permit trade-offs between different workloads. Application placement controller (APC) provides the decision-
making logic for placement of both web and non-interactive workloads. Placement optimizer is tuned to provide dynamic placement
for web applications. Placement algorithm with placement control loop is used to place jobs in the server.
 Transactional and batch workload based resource allocation is provided in the autonomic workload management system.
Placement algorithm with placement control loop is improved to manage low level and high level resources. Data retrieval rate is
integrated with the placement process. Workload and web applications are placed with estimated and requested computation loads.
Data distribution factor is integrated with the system.
Index Term - Performance Management, Resource management, Virtualization, Workload management.

1 INTRODUCTION

Cloud computing is Internet based
development and use of computer technology.
In concept, it is a paradigm shift whereby details
are abstracted from the users who no longer
need knowledge of, expertise in, or control over
the technology infrastructure "in the cloud" that
supports them. It typically involves the
provision of dynamically scalable and often
virtualized resources as a service over the
Internet.

Fig 1. Cloud computing logical diagram

Overview

The term cloud is used as a metaphor for
the Internet, based on how the Internet is
depicted in computer network diagrams and is
an abstraction of the underlying infrastructure it
conceals. Typical cloud computing providers
deliver common business applications online
which are accessed from a web browser, while
the software and data are stored on the servers.

These applications are broadly divided

into the following categories: Software as a
Service (SaaS), Utility Computing, Web Services,
Platform as a Service (PaaS), Managed Service
Providers (MSP), Service Commerce, and
Internet Integration. The name cloud computing
was inspired by the cloud symbol that is often
used to represent the Internet in flow charts and
diagrams.

2 RELATED WORKS

 The explicit management of
heterogeneous workloads was CPU shares are
manually allocated to run mixed workloads on a
large multiprocessor system. This is a static
approach, and does not run workloads within
virtual machines (VM). The relative

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/File:Cloud_computing.svg

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 618
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

performance functions we use in our system are
similar in concept to the utility functions that
have been used in real-time work schedulers to
represent the fact that the value produced by
such a system when a unit of work is completed
can be represented in more detail than a simple
binary value indicating whether the work met
its or missed its goal. Outside of the realm of the
real-time systems, focus on a utility-guided
scheduling mechanism driven by data
management criteria, since this is the main
concern for many data-intensive HPC scientific
applications. In our work, we focus on CPU-
bound heterogeneous environments, but our
technique could be extended to observe data
management criteria by expanding the
semantics of our RPFs. Despite the similarity
between an RPF and a utility function, one
difference should be pointed out. While utility
functions are typically used to model user
satisfaction or business value resulting from a
particular level of performance, an RPF is
merely a measure of relative performance
distance from the goal. Hence, we do not study
the correctness of RPFs with respect to modeling
user satisfaction. If such a satisfaction model
exists, it may be used to transform an RPF into a
utility function. In [5] and [6], the authors
leverage utility-based systems for making
placement decisions and provisioning resources:
these works do not address the problem of
managing heterogeneous workloads, as they are
both focused on transactional workloads only.

 There is also previous work in the area
of managing workloads in virtual machines. The
overhead of a dynamic allocation scheme that
relies on virtualization, covering both CPU-
intensive jobs and transactional workloads, but
does not consider mixed environments. Bodı’k.P
et al. [8] uses Machine Learning techniques for
making management decisions. The authors
stress the max-min-shares approach, focusing on
the use of current virtualization control knobs.
Work presented focuses on the cost of VM
migration, and mitigate it by minimizing
migrations over time. In [2], authors propose a

joint-VM sizing approach in which multiple
VMs are consolidated and provisioned as an
aggregate. In [3], authors propose a holistic
approach to treat performance, power and
cooling of IT infrastructures. Neither of these
techniques provides a technology to
dynamically adjust allocation based on SLA
objectives in the face of resource contention. The
authors of [4] present new scheduling
algorithms for the cloud, but their effort is
focused only on long running jobs and VM
migration is not used. The authors of [7] focus
their work on multi-tiered transactional systems,
with special effort on avoiding the damaging
effects of workload burstiness. The authors
propose a resource manager that is decoupled
from the infrastructure provider. In our work,
the resource manager is part of the computing
infrastructure.
 Placement problems in general have
also been studied in the literature, frequently
using techniques including bin packing,
multiple knapsack problems, and
multidimensional knapsack problems. The
optimization problem that we consider presents
a nonlinear optimization objective in contrast.
The authors evaluate a similar problem to that
addressed in our work and use a simulated
annealing optimization algorithm. Their strategy
aims to maximize the overall system utility
while we focus on first maximizing the
performance of the least performing application
in the system, which increases fairness and
prevents starvation. A fuzzy logic controller is
implemented to make dynamic resource
management decisions. This approach is not
application centric—it focuses on global
throughput—and considers only transactional
applications. The algorithm proposed allows
applications to share physical machines, but
does not change the number of instances of an
application, does not minimize placement
changes, and considers a single bottleneck
resource.

3 PROBLEM STATEMENTS

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 619
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Heterogeneous workloads run on the
same physical nodes and pose extraordinary
challenges on a cloud management middleware.
Integrated performance management of mixed
workloads is a challenging problem. First,
performance goals for different workloads tend
to be of different types. For interactive
workloads, goals are typically defined in terms
of average or percentile response time or
throughput over a short time interval, while
goals for non-interactive workloads concern the
performance of individual jobs. Second, due to
the nature of their goals and the short duration
of individual requests, interactive workloads
lend themselves to management at short control
cycles, whereas non-interactive workloads
typically require calculation of a schedule for an
extended period of time. In addition, different
types of workload require different control
mechanisms for management. Transactional
workloads are managed using flow control, load
balancing, and application placement. Non-
interactive workloads need scheduling and
resource control. Traditionally, these have been
addressed separately.

 Our technique relies on common
virtualization control mechanisms to manage
workloads. In addition, our system uses Relative
Performance Functions (RPFs) to permit trade-
offs between different workloads. The RPFs
define application performance relative to that
application’s goal. It can therefore be seen that
equalizing the achieved relative performance
between two applications results in “fairness”—
the applications will be equally satisfied in
terms of relative distance from their goals. The
original contribution of this paper is a scheme
for modeling the performance of, and managing,
non-interactive long-running workloads.

4 CLOUD WORKLOAD MANAGEMENT
SYSTEMS

 The managed system includes a set of
heterogeneous server machines, referred to
henceforth as nodes. Web applications, which
are served by application servers, are replicated

across nodes to form application server clusters.
Requests to these applications arrive at an entry
router which may be either an L4 or L7 gateway
that distributes requests to clustered
applications according to a load balancing
mechanism, and implements a flow control
technique. Long-running jobs are submitted to
the system via the job scheduler, which, unlike
traditional schedulers, does not make job
execution and placement decisions. In our
system, the job scheduler only manages
dependencies among jobs and performs
resource matchmaking. Once dependencies are
resolved and a set of eligible nodes is
determined, jobs are submitted to the
application placement controller (APC).

 APC is the most important component
of the system. It provides the decision-making
logic that affects placement of both web and
non-interactive workloads. Its placement
optimizer calculates the placement that
maximizes the minimum satisfaction across all
applications. We introduced a technique that
provides such dynamic placement for web
applications: APC used in this system is an
augmented version of that controller. We
modified the algorithm inputs from application
CPU demand to a per-application RPF of
allocated CPU speed. Permitting resource
requirements to be represented by nonlinear
RPFs allows us to better deal with
heterogeneous workloads which may differ in
their sensitivity to a particular resource
allocation.

 In our work, we leverage the flow
controller, which comes up with an RPF for each
web application This RPF gives a measure of
application satisfaction with a particular
allocation of CPU power given its current
workload intensity and performance goal.
 Generating RPFs for the long running
jobs is not studied in previous work, and is the
main contribution of this work. Each job has an
associated performance goal, and when a job
completes exactly on schedule, the value of the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 620
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

RPF is zero. Otherwise, the value increases or
decreases linearly depending on the distance of
completion time from the goal. Currently, we
only support completion time goals, but we plan
to extend the system to handle other
performance objectives.

 APC relies on the knowledge of
resource consumption by individual requests
and jobs. The web workload profiler obtains
profiles for web requests in the form of the
average number of CPU cycles consumed by
requests of a given flow. The job workload
profiler obtains profiles for jobs in the form of
the number of CPU cycles required to complete
the job, the number of threads used by the job,
and the maximum CPU speed at which the job
may progress.

5 HETEROGENEOUS WORKLOADS
MANAGEMENT MODELS

 The goal of the technique introduced in
this paper is to make placement decisions that
involve applications of different nature, more
specifically transactional applications and long-
running workloads. Given the different
characteristics of each workload, that make their
performance hardly comparable, we leverage
RPF to produce a normalized representation of
their performance. RPFs are leveraged by the
placement algorithm to make placement
decisions, with the goal of maximizing the
relative performance delivered by all the
applications in the system.

 The placement algorithm and RPFs for
transactional workloads are not a novel
contribution of this work. The main contribution
of this work is the introduction of a model that
allows the creation of RPFs for long running
workloads. The placement algorithm is
extended to leverage such a model and is
therefore able to deal with heterogeneous
workloads. In the following sections, we present
a formal description of the problem addressed
in this work.

 The application placement problem is
known to be NP-hard and heuristics must be
used to solve it. In this paper, we leverage an
algorithm proposed and adapted to a nonlinear
optimization objective. The basic algorithm, as
described above, is surrounded by the
Placement control loop, which is designed to
have the Application Placement Controller
periodically inspect the system to determine if
placement changes are now required to better
satisfy the changing extant load. The period of
this loop is configurable and can be interrupted
when the configuration of the system is
changed.

 The placement change phase is executed
several times, each time being referred to as a
round. Each round invokes the placement
change method, which makes a single new
placement suggestion starting from the
placement suggestion provided by the previous
round’s execution. The placement change
method first iterates over nodes. For each node,
it iterates over all instances placed on this node
and attempts to remove them one by one, thus
generating a set of configurations whose
cardinality is linear in the number of instances
placed on the node. For each such configuration
it iterates over all applications with some
unsatisfied CPU demand, attempting to place
new instances on the node as permitted by the
constraints. The key to the accuracy and
performance of the algorithm is the order in
which nodes, instances, and applications are
visited in the three nested loops. The order must
be driven by the values of um. In the outer loop,
nodes are processed according to the highest
utility of stopping, which is calculated for a
node by calculating the highest RPF among all
applications placed on that node after an
instance of an application is stopped. In the
intermediate loop, instances are processed in
decreasing RPF order calculated against the
current placement. Finally, in the inner loop,
applications are considered in the increasing
order of RPF. In addition, numerous carefully

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 621
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

tuned shortcuts are used to reduce the
computational complexity of the algorithm.

 The computational complexity of the
technique is O (NMk), where k is the maximum
number of instances on a node. The complexity
may further increased by the RPF calculation.
For transactional workloads, we can evaluate
RPFs in O (1), but for long running workloads
that bound is non constant. In practice, the
computation time remains below 10 s for up to
700 applications, reaching 23 s for 1,000
applications. Recall that the average size for
enterprise datacenter ranges from tenths of
nodes to a few hundreds typically. These values
are perfectly acceptable for the purpose of these
systems.

6 NON INTERACTIVE WORKLOADS
MANAGEMENT MODELS

 In this section, we focus on applying our
placement technique to manage long-running
jobs. We start by observing that a performance
management system cannot treat batch jobs as
individual management entities, as their
completion times are not independent. For
example, if jobs that are currently running
complete sooner, this permits jobs currently in
the queue to complete sooner as well. Thus,
performance predictions for long-running jobs
must be done in relation to other long-running
jobs.
 Another challenge is to provide
performance predictions with respect to job
completion time on a control cycle which may
be much lower than job execution time.
Typically, such a prediction would require the
calculation of an optimal schedule for the jobs.
To trade off resources among transactional and
long-running workloads, we would have to
evaluate a number of such schedules calculated
over a number of possible divisions of resources
among the two kinds of workloads. The number
of combinations would be exponential in the
number of nodes in the cluster. We therefore
propose an approximate technique, which is
presented here.

6.1 Job Characteristics

 We are given a set of jobs. With each job
m we associate the following information:

• Resource usage profile. A resource
usage profile describes the resource
requirements of a job and is given at job
submission time—in the real system,
this profile comes from the job workload
profiler. The profile is estimated based
on historical data. Each job m consists of
a sequence of Nm stages, s1,. . . , sNm,
where each stage sk is described by the
following parameters:
- The amount of CPU cycles consumed
in this stage, αk,m.
- The maximum speed with which the

stage may runs, .
- The minimum speed with which the

stage must run, whenever it runs, .
- The memory requirement γk,m.

• Performance objectives. The SLA
objective for a job is expressed in terms
of its desired completion time, זm, which
is the time by which the job must
complete. Clearly, זm should be greater

than the job’s desired start time, ,
which itself is greater than or equal to
the time when the job was submitted.
The difference between the completion
time goal and the desired start time, זm -

, is called the relative goal, and
can be understood as the maximum
acceptable job runtime. Notice that job
runtime will depend on allocated
resources to the Virtual Machine in
which the job runs.

 We are also given an RPF that maps
actual job completion time tRmR to a measure of
satisfaction from achieving it, uRmR(tRmR). If job m
completes at time tRmR, then the relative distance
of its completion time from the goal is the job’s
actual runtime normalized to its relative goal,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 622
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

which is expressed by the RPF of the following
form:

 (1)
• Runtime state. At runtime, we monitor

and estimate the following properties
for each job: current status, which may
be either running, not started,
suspended, or paused; and CPU time
consumed thus far,

.
• Relative goal factor. For the purpose of

easily controlling the tightness of SLA
goals in our experiments, we introduce
a relative goal factor which is defined as
the ratio of the relative goal of the job to
its execution time at the maximum

speed, .

6.2 Hypothetical Relative Performance

 To calculate job placement, we need to
define an RPF which APC can use to evaluate its
placement decisions. While the actual relative
performance achieved by a job can only be
calculated at completion time, the algorithm
needs a mechanism to predict the relative
performance that each job in the system will
achieve given a particular allocation. This is also
the case for jobs that are not yet started, for
which the expected completion time is still
undefined. To help answer questions that APC
is asking of the RPF for each application, we
introduce the concept of hypothetical relative
performance.

7 MIXED WORKLOAD PLACEMENTS
FOR CLOUDS

 The system is designed to manage the
resources and workloads under clouds. The web
applications and transactional applications are
managed by the system. Data and
computational resources are allocated by the
system. The system is divided into five major
modules. They are resource monitoring, data

sources, workload manager, Application
Placement Controller (APC) and load
distribution. Resource monitoring module is
designed to monitor the computational
resources. Data sources module is designed to
manage the data sources. Workload manager
module handles the workload submission
process. Application Placement Controller
(APC) module is designed to handle resource
allocation for the applications. Load distribution
module is designed to distribute the workloads
to the providers.

7.1 Resource Monitoring

 The computational resources are
provided by a set of cloud nodes. Processor and
memory resources are provided by the nodes.
Total resources and available resource levels are
monitored and updated to the server. Resource
levels are updated with workload execution
process.

7.2 Data Sources

 Data sources are used to provide
databases and data files. Data sources are placed
in different machines. Workloads are scheduled
with data source requirements. Data source
distribution is also managed by the system.

7.3 Workload Manager

 Transactional applications and batch
jobs are submitted as workloads. Transactional
web workloads are submitted to the web server.
Interactive and non-interactive workloads are
assigned with data and resources. The
workloads are collected from the clients.

7.4 Application Placement Controller (APC)

 Application placement controller
handles the service placement process.
Placement optimizer is used to verify the
performance levels. Services and resource levels
are analyzed under the APC. Relative

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 623
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

performance functions are used to estimate the
performance levels.

7.5 Load Distribution

 The transactional and batch workloads
are assigned to the resources. The transactional
web applications are assigned with high
priority. The batch workloads are also assigned
with data source levels. Performance prediction
is estimated for load distribution process. The
original contribution of this scheme is for
modeling the performance of, and managing,
non-interactive long-running workloads.

8 CONCLUSIONS

 Enterprise datacenters consolidate
workloads on the same physical hardware to
reduce the cost of infrastructure and electrical
energy. Heterogeneous workloads have
different nature. A heterogeneous set of
applications is running a web application and a
batch job on the same physical server. The
system manages the mixed workloads with long
running jobs and transactional applications. The
system allocates workload types on the same
physical hardware with virtualization control
mechanism. The system manages resources with
load distribution. Data source allocation is also
carried out under the system. The system
reduces the computational time. Efficient
resource monitoring process is provided in the
cloud environment.

REFERENCES

[1] David Carrera, Malgorzata Steinder, Ian Whalley, Jordi

Torres, and Eduard Ayguade, “Autonomic Placement
of Mixed Batch and Transactional Workloads”, IEEE
Transactions On Parallel And Distributed Systems, Vol.
23, No. 2, February,12.

[2] S. Meng, L. Liu, and V. Soundararajan, “Tide: Achieving
Self- Scaling in Virtualized Datacenter Management
Middleware,” Proc. 11th Int’l Middleware Conf.
Industrial Track, pp. 17-22, 2010.

 [3] Y. Chen, D. Gmach, C. Bash, C. Hoover, and S. Singhal,
“Integrated Management of Application Performance,

Power and Cooling in Data Centers,” Proc. IEEE
Network Operations and Management Symp. (NOMS),
pp. 615-622, Apr. 2010.

 [4] Z. Zhang, L.T.X. Phan, G. Tan, S. Jain, H. Duong, B.T.
Loo, and I. Lee, “On the Feasibility of Dynamic
Rescheduling on the Intel Distributed Computing
Platform,” Proc. 11th Int’l Middleware Conf. Industrial
Track, pp. 4-10, 2010.

 [5] R. Urgaonkar, U. Kozat and M. Neely, “Dynamic
Resource Allocation and Power Management in
Virtualized Data Centers,” Proc. IEEE Network
Operations and Management Symp. (NOMS), pp. 479-
486, Apr. 2010.

 [6] J. Hanson, I. Whalley, M. Steinder, and J. Kephart,
“Multi-Aspect Hardware Management in Enterprise
Server Consolidation,”Proc.IEEE Network Operations
and Management Symp. (NOMS), pp. 543-550, Apr.
2010.

 [7] A. Caniff, L. Lu, N. Mi, L. Cherkasova, and E. Smirni,
“Efficient Resource Allocation and Power Saving in
Multi-Tiered Systems,” Proc. 19th Int’l Conf. World
Wide Web (WWW ’10), pp. 1069-1070, 2010.

 [8] P. Bodı´k, R. Griffith, A. Fox, M.I. Jordan, and D.A.
Patterson, “Statistical Machine Learning Makes
Automatic Control Practical for Internet Datacenters,”
Proc. Conf. Hot Topics in Cloud Computing
(HotCloud ’09), 2009.

 [9] M. Cardosa, M.R. Korupolu, and A. Singh, “Shares
and Utilities Based Power Consolidation in
Virtualized Server Environments,” Proc. IFIP/IEEE
Int’l Symp. Integrated Network Management (IM ’09),
pp. 327-334, 2009.

 [10] E. Arzuaga and D.R. Kaeli, “Quantifying Load
Imbalance on Virtualized Enterprise Servers,” Proc.
First Joint WOSP/SIPEW Int’l Conf. Performance Eng.
(WOSP/SIPEW ’10), pp. 235-242, 2010.

[11] A. Caniff, L. Lu, N. Mi, L. Cherkasova, and E. Smirni,
“Efficient Resource Allocation and Power Saving in
Multi-Tiered Systems,” Proc. 19th Int’l Conf. World
Wide Web (WWW ’10), pp. 1069-1070, 2010.

 [12] H.C. Lim, S. Babu, J.S. Chase, and S.S. Parekh,
“Automated Control in Cloud Computing: Challenges
and Opportunities,” Proc. First Workshop Automated
Control for Datacenters

IJSER

http://www.ijser.org/

	Fig 1. Cloud computing logical diagram Overview

